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1. INTRODUCTION

Starting from a problem concerning the uniform approximation of a
function and its derivatives, Moursund [10, 11] has recently considered the
problem of finding, for a real continuous functionj(x) in Cr[a, b], an algebraic
polynomial go(x) = :L:~l alxi - 1 of degree n - 1 which minimizes

m~x (max I Di(f(X) - g(x))I).
O<;,<;r xE[a,bj

The nature and number of the extreme points of best approximation were
investigated. In the special case of approximation of a function and its first
derivative by algebraic polynomials a uniqueness theorem was obtained. More
recently, Dunham [5] studied the problem of simultaneously approximating
elements of a given set F by elements of a family of real-valued functions,
unisolvent of degree N, on a compact interval of the real line. He considered
the cases (i) F consists of one bounded real-valued function, (ii) F consists of
an upper semicontinuous real-valued functionj+ and a lower semicontinuous
real-valued function j-, with j+ ;:?o j- pointwise, and (iii) F consists of a
finite number of continuous real-valued functions. Later on, Diaz and
Mclaughlin [3] showed that analogous results hold for any nonempty
family F; in fact, they pointed out that the general problem of simultaneous
approximation of a family F by means of functions from a family G is
equivalent to the problem of the simultaneous approximation of certain
functions F- and F+ with F- :(; F+, where

F+(x) = inf sup sup j(y)
8>00<;lx-y!<8 fEF

and
F-(x) = sup inf infj(y)

8>0 O<;lx-yl<8 fEF

for a :(; x :(; b.
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At this stage there arose, in a natural way, the question: Could all these
results be particular cases of a more general theory? The an,swer is affirmative.
Namely, the above sets G and F can be considered as subsets of a more
general "space", and the derivatives of their elements can be considered as
continuous operators on general spaces. In fact, we shall deal with a still more
general problem: Let X, Y be two real normed linear spaces, F a compact
subset of X, G a convex subset of X and A : X -- Ya continuous operator.
The question is to find a g' E G which minimizes

max(maxPlf - g), maxplAf - Ag)),
tEl" tEl"

wherePl(') andp2(') are given continuous seminorms on X and Y, respectively.
The theory which we will develop for this problem is close to those in the
theory of uniform approximation of a function and its derivatives. The
sufficiency of a Kolmogorov-type condition for a best approximation for
operators A subject to no restrictions and the necessity of that condition for
A subject to "closed-sign" property are given. In case G is a finite-dimensional
subspace, we obtain a similar result to that in [12, p. 170]. The application to
various kind of spaces wiII be discussed elsewhere.

A summary of notation is given as fonows: Let X*, y* be the dual spaces
of X and Y, respectively. The value of the continuous linear functional k in
X* (or Y*) at x in X (or Y) wiII be denoted as (k, x). Let K(K) be a subset of
X* (Y*, respectively) which is symmetrical, a(X*, X)-compact (a(Y*, Y)­
compact) and norm-bounded. We define continuous seminorms PI , P2 on
X, Y, respectively as

h(f) = max (k, f)
kEK

P2(Y) = max (Ii, y)
kEK

for fin X,

for yin Y.

Let F be a compact subset of X (in norm topology). We introduce, for
gEX,

d2(g) = maxplAf - Ag),
tEl"

and

Let G be a closed convex subset of X. We seek an element g' in G such that

dp(g') = inf dp(g).
gEG
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Such an element will be called a simultaneous best approximation to F from
G, or more briefly, a "best approximation."

To answer the question of the existence ofg', we first note that the functions
dl(g) and d2(g) are the suprema of families of continuous functions, therefore,
lower semicontinuous [7, p. 89]. It follows that dF(g) = max(dl(g), d2(g)) is
again lower semicontinuous. This ensures that dig) attains its infimum on a
compact set. Thus, we have the following:

LEMMA 1.1. Let G be an n-dimensional subspace of X. Assume that the
restriction ofplO to G is a norm. Then there exists g' E G such that

dig') = inf dig).
gEG

Proof Let gi be a sequence in G such that lim dF(gi) = infYEG dig).
Moreover,

for some real M. Since maxfEFPI(f - gi) ~ dF(gi) and maxfEF PI(f) is fixed.
As the restriction of PIO is a norm, so {gi} is a bounded sequence in G.
Hence there exists g' E G such that gi converges to g'. Furthermore for each i,

since the term in bracket tends to zero as i -+ 00 and also, by semicontinuity
of dF('), dp(g') - digi) -+ 0 as i -+ 00, this shows that

dp(g') = inf dig),
gEG

which proves the theorem.
Obviously, in the special case when g' mlll1mlZeS dl(g) or dlg) and

dF(g') = d1(g') (or d2(g')), then the problem is solved, with g' a best approxi­
mation, since in any case

max(inf dig), inf d2(g)) ~ inf max(dl(g), d2(g)).
gEG gEG gEG

Moreover, in this case equality holds here. In the more general case where
inequality holds, we have the following useful result.

LEMMA 1.2. Assume that

max(inf d1(g), inf d2(g)) < inf max(d1(g), d2(g)).
gEG gEG gEG
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Ifd2(g) = maxfeF P2(Af - Ag) is convexfor all gin G andg' is a best approxi­
mation, then d1(g') = d2(g').

Proof Assume that d2(g') - d1(g') = € > 0 (for the case € < 0, the
proof follows in the same way). Then g' cannot minimize d2 , for this would
lead to a contradiction of the hypothesis. Define a set

U = {g E G : h(g - g') ~ lE}.

Then

for g E U.

Moreover, since d2(g) is convex and g' does not minimize d2(g), by the
global minimum property of convex functions [2, p. 25], there exists gl E U
such that

This shows that gl is a better approximation than g', which contradicts the
hypothesis. The proof is thus completed.

Since the convexity assumption on d2(g) holds, for example, when A is a
linear operator, it is clear that in a large class of problems having best
approximations we have d1(g') = dlg'). That this is not always the case
however is illustrated by the following example:

EXAMPLE 1. Let X = y = C[-1, 1] with Chebyshev norm. Obviously
Chebyshev norm is generated by the set {±(point evaluated functionals at
x) : -1 ~ x ~ I} of C*. Now, define an operator A as follows: for any hex)
in C(-I, 1],

I
I
3/4
3/4

A(h)(x) = 1(7/4) - 4h(x)
hex)
(3/2) - hex)
(1/2) + hex)

hex) = 1/2;
hex) = 3/4;
hex) = 1/4;
hex) ~ 1/4;
hex) ~ 3/4;

1/2 ~ hex) ~ 3/4;
1/4 :"( hex) ~ 1/2.

It is easy to check that A is a continuous mapping from C[-1, 1] into itself.
Suppose F = {f(x) = 1 - x 2} is to be approximated by real constants.
Then,

dF(a) = max(lll - x 2 - a liro , Ii A(1 - x 2
) - Aa
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As is evident from the following figure a = i is a best approximation, and
dFm = ! = d2m =1= dIm = i. Moreover, we have

max(inf dla), inf dla)) < inf dp(a).
QeR QeR QeR

l(x)

FIGURE 1

Finally, we consider a particular situation which leads trivially to a best
approximation as defined above, and which we wish to exclude. Suppose
that, for some go E G and k E K (or Ii E K), there exists11 '/2 , E F such that

(or (Ii, All - Ago) = dF(go) and (Ii, Af2 - Ago) = -dFCgo)). Then go is a
best approximation, as no approximation can make the error smaller at k
(or Ii). For example, suppose X = C(y) [0, 7T](Y ;;;: 1) endowed with norm
maxOl/ll"" II Dill",) and Y = C[O, 7T], F = {e-"', sin x - I} and A is the first
derivative operator. Let PI(f) = P2(f) = max",e[O,1T] 1 f(x)l, We consider
that F is to be approximated by ax + b where a, b are real numbers. It is
obvious that when a = 0, b = 0, there exist Xo = Xl = °such that

dP(O) = max I f(O)1 = max I Df(O)1= 1
reF reF

and
(e-O)(sin°- 1) < °

(-e-O)(cos 0) < 0.

fix)

FIGURE 2
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Thus, a = 0, b = 0 is a best approximation. As one can easily check from
the above figure, there is no other a, b that can make both errors smaller at
the point Xo = Xl = O.

This situation has been discussed where a point such as go is called a
"straddle phenomenon." In this chapter, unless otherwise stated, the term
"best approximation" will exclude stranddle phenomena.

2. GENERAL CHARACTERIZATION THEOREM

Given g' E G define the following subsets ofK andK, respectively, as

Bg ' = {k in K: 3fin F, (k,f - g') = dp(g')};

Bg , = {k in K : 3fin F, (k, Af - Ag') = dp(g')}.

Since

dig) = max max (k,f - g) = max max (k,f - g),
fEF kEK kEK fEF

so by compactness there exist k E K,f E F such that dl(g) = (k,f - g).
Similarly, for d2(g).

Also, if dl(g') =F dlg'), one of Bg ' ,Bg ' is empty.

LEMMA 2.1. Let g' in G and closed subsets Me K, !VI C K be such that

max (k,f - g') ~ 0 for all k in M,
fEF

max (ii, Ai - Ag') ~ 0 for all Ii in ilf,
fEF

and

Then

inf ((k, g - g'), (Ii, Ag - Ag'») ~ 0
kEM,kEM

for all g in G.

YJ = inf dp(g) ~ inf _ (max (k,f - g'), max (Ii, Af - Ag'».
gEG kEM,kEM fEF fEF

Proof In case maxfEP(k,f - g') = 0 for some kin M or

max(li, Af - Ag') = 0
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for some kin M, the lemma is trivial. We assume that maxfEF(k,f - g') > 0
for all k in M and maxfEF (k, Af - Ag') > 0 for all Ii in M. Suppose that

inf (max (k,f - g'), max (Ii, Af - Ag'» > YJ.
kEM,kEM fEF fEF

Then, there exists g in G such that

YJ ~ dF(g) < inf ~ (max (k,f - g'), max (Ii, Af - Ag'».
keM,kEM fEF feF

This implies that

d1(g) < max (k,J - g')
feF

and

d2(g) < max (Ii, Af - Ag')
fEF

for all kin M

for all Ii in M.

Therefore, for k in M, there exists fl (depending on k) in F such that

(k,fl - g) < (k,fl - g'),
i.e.,

(k, g - g') > 0,

and, for each kin M, there existsf2 (depending on k) in Fsuch that

i.e.,

Thus we have

(k, Af2 - Ag) < (k, Af2 - Ag'),

(k, Ag - Ag') > O.

and

(k,g - g') > 0

(k, Ag - Ag') > 0

for all kEM

for all Ii EM.

This contradicts the hypothesis, which proves the lemma.

THEOREM 2.1. lfg' E G is such that d1(g') = dlg') and

inf «k, g - g'), (k, Ag - Ag'» ~ 0 for g E G, (2.1)
keB.',kE!J.,

then g' is a best approximation.

In fact, this is an immediate consequence of the Lemma 2.1.
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We know that if d1(g') =1= d2(g'), then one or other of the sets Bg ' or By' is
empty, and in all of the following theorems of this chapter we shaH
accordingly, as in Theorem 2.1, explicitly assume dI(g') = d2(g').

EXAMPLE 2. Suppose X = Y = qQ, 1] and define A : X ---+ Y
Ah(x) = xh2(x). Furthermore, assume that K = K = {l- point evaluation
functionals at x : °~ x ~ I}, then

Pl(f) = P2(f) = Ilfll", = max I f(x)l.
XE[O,lj

Suppose F consists only of the function f(x) = x and is to be approximated
by real constants. Hence

It is easy to check that the best approximation for dF(a) is

-1 + vSa=-----
2

and

d (-1 + VS) = -1 + vS = d (-1 + viS) = d (-1 + VS)
F 2 2 12 J 22 .

Moreover, the set Ba of extremal functionals consists only of a negative
point evaluation functional at x = 0, i.e., Ba = {x: (x, h) = -hex), for all
hE qo, 1) and x = O}. Similarly, Ra consists only of a positive point evalua­
tion functional at x = 1, i.e., Ra = {x : (x, h) = hex) for all hE qo, 1) and
x = I}. However, for some C E R such as C = -2 we have

and

A ((-1 + V5))(x, c - a) = - -2 - 2 > 0

fi (-1 + VS)2(x, Ac - Aa) = 4 - 2 > 0

for xE Ba ,

for xERa.

Hence, the inequality (2.1) is not fulfilled.
In view of this negative result, it appears that the necessity of condition

(2.1) can be established only under further restrictive hypotheses. We now
define a property which, as we shall prove, implies that the condition (2.1) is
also necessary. This property is a generalization of the closed-sign property
introduced by Dunham [6] in 1969.
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DEFINITION 2.1. Let G be a convex subset of X. The continuous map A
from X into Y is said to have the closed-sign property at g E G, if, for any
hE G, and closed subset we K such that (w, Ah - Ag) =1= 0 for w E W, there
exists a 1 > 0 > 0 such that, for t E (0, 0]

sgn(w, Ah - Ag) = sgn(w, Agt - Ag) for all WE W,

where gt = g + t(h - g).
We shall say that A has the closed-sign property on GifA has it at all g E G.
To illustrate the definition, let X = Y = C[O, 1] and define A : X -)0 Y by

Ah = h2, convex subset G = {ax: for real a?: o} and

K = {±x : x E [0, I]},

where x is a point evaluation functional at x. Then, for anyalx, a2x in G and
closed subset W of K, such that

(x, Aalx - Aa2x) = ± (al - a2)(al + a2) x2 =1= °for x E W.

We have

where at = a2+ teal - a2)'
For the case a2 = 0, itis clear sgn(x, AalX - Aa2x) = sgn(x, Aatx - Aa2x)

for t > 0. Otherwise, there exists a 1 > 0 > °such that 2a2 + teal - a2) > 0
for all t E (0, 0]. Hence, for such 0, we have sgn(x, AalX - Aa2x) =

sgn(x, Aatx - Aa2x) for all x E W, t E (0,0]. This shows that A has the
closed-sign property on G.

Let us return to the Example 2. It is easy to check that A fails to have the
closed-sign property at a = (-1 + V5)/2. Further, we have already shown
that the condition (2.1) in Theorem 2.1 is not a necessary condition for g' to
be a best approximation. In fact these two statements are related, as is shown
by the following theorem:

THEOREM 2.2. Suppose that A has the closed-sign property at g' E G and
dl(g') = d2(g'). Then if g' is a best approximation,

inf _ «k, g - g'), (ii, Ag - Ag'» ~ °
kEEg·,kEEg•

Proof. Suppose there exists gl E G such that

for gEG.

inf «k, gl - g'), (ii, Agl - Ag'» > O.
kEBg' ,kEBg'

(2.2)
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Then we will show that g' is not a best approximation. Since Bg , ,Bg ' is
u(X*, X)-compact (u(Y*, Y)-compact, respectively), from inequality (2.2), we
may conclude that there are relatively open subsets U, U of K, K containing
Bg " Bg , such that

inf «k, gl - g'), (ii, Agl - Ag'» ;? a
kEU,kE(J

for some a > O.

Since U, U are relatively open in K, K and Bg' C U, Bg , C C, there exists a
real c > 0 such that

dICg') - max max (k,j - g') ~ c,
kEK\U fEF

d2( g') - max max (ii, Af - Ag') ;? c.
kEg\V fEF

Hence, for k E U, 0 < t < 1, we have

max (k,j - gt) = max (k,j - g') - t(k, gl - g')
fEF fEF

< max (k,j - g') ~ dI(g'),
fEF

where gt = g' + t(gl - g').
For kEK\U,

(2.3)

(2.4)

(2.5)

for 0 < t sufficiently small.
Let iJ be the closure of U. Since A is a continuous map, we have

(ii, Agl - Ag') ~ a Vii E tJ.

Furthermore A has the closed-sign property at g', so for 0 < t sufficiently
small, we have (Ii, Agt - Ag') > 0 Vii E tJ. Hence, for Ii E U,

max (ii, Af - Agt) = max (ii, Af - Ag') - (k, Agt - Ag')
~F ~F

< max (ii, Af - Ag') ~ dlg').
fEF

For ii EK\U,

max (k, Af - Agt) ~ max (ii, Af - Ag') + plAg' - Agt)
~F ~F

(2.7)
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for 0 < t sufficiently small and continuity of A and P2' Combining (2.5),
(2.6), (2.7) and (2.10), we have dF(gt) < dig'). This shows that g' is not a
best approximation. The theorem is thus proved.

Note that in case A is a linear operator, then, obviously, A has the closed­
sign property on G.

3. FRECHET-DIFFERENTIABLE OPERATOR

In this section, we will consider the operator A possessing a Frechet
derivative. This derivative, in fact, is a linear operator from X into Y, for
each fixed g E X, denoted by Ay'. That is, for each E > 0, there exists 0 > 0
such that

II A(g + h) - Ag - Ay'h II <; Ell h II

for all hEX with II h II < o. Therefore, for fixed h(~ 0) E X, setting

oCt) = (A(g + th) - Ag)/t - Ay'h for real t,

we have oCt) E Y satisfying limltl_>o II o(m = O. Thus, we have the following
theorem:

THEOREM 3.1. Suppose A has a Frechet derivative at g' in convex set G and
d1(g') = d2(g'). Ifg' is a best approximation, then for all g E G

inf _ ((k, g - g'), (kA~' ,g - g')) <; O.
kEBg',kEBgo

Proof Suppose there exists a gl E G such that

inf ((k, gl - g'), (kA~' , gl - g')) > O.
kEBg',kEEg'

(3.1)

(3.2)

As Bg , and Bg , are a(X*, X)-compact and a(Y*, Y)-compact, respectively,
there exist relatively open sets U, aof K, K, containing Bg " Bg " respectively,
such that,

for some a > O.

VkE U,

VkEO,

(k, gl - g') ~ a,

(3.3)
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Since K, K are a(X*, X)-compact and a(Y*, Y)-compact, respectively, there
exist real numbers Cl , C2 > 0 such that

max max (k,f - g') = d1(g') - C1 ,
kEK\U fEF

max max(k, Ai - Ag') = d2(g') - c2 •
kEK\U fEF

Write gt = g' + t(gl - g'), 0 < t < 1 and

max (k,f - gt) = max (k,f - g') - t(k, gl - g'),
rEF fEF

so for k E U, 0 < t < 1

max (k,f - gt) < max (k,f - g') ~ d1(g')
fEF rEF

(3.4)

for kEKjU,

max (k,f - gt) ~ d1(g') - C1 + tPl(& - g') < dlg') (3.5)
fEF

for 0 < t sufficiently small.
As A is Frechet-differentiable at g', we have

Agt - Ag' = t[S(t) + A~'(gl - g')J,

From inequality (3.3), for k E a,

lim Ii S(t)!! = 0.
/->0

(k, A;'(gl - g') + Set)~ = (kA~' , gl - g') + (k, Set))

;? a - Ii k II . II S(t)!! > 0,

for 0 < t sufficiently small, because K is norm bounded and II o(t)l! -'>- 0, as
t -'>- O. So for small t > 0, we have

(k, Agt - Ag') > OVk EO.

Write

max (k, Ai - Agt) = max (k, AI - Ag') - (k, Agt - Ag').
~F ~F

Hence, for small t > 0, 'Ilk EO,

(3.6)

max (k, AI - Agt) < max (k, Al - Ag') ~ d2(g') (3.7)
~F ~F
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Vk EK/U,

max (k, Ai - Agt) ~ dlg') - c2 + P2(Agt - Ag') < d2(g'), (3.8)
fEF

for small t > 0 and continuity of A and P2 .
Combining (3.4), (3.5), (3.7), and (3.8), we have dF(gt) < dF(g'). Thus, g'

is not a best approximation, which proves the theorem.

THEOREM 3.2. Suppose A has a Frechet derivative at g' in convex set G and
dl(g') = d2(g'). Suppose further that A satisfies either of the following condi­
tions:

(i) A has the closed-sign property at g' and there exists g E G such that
(kA~" g - g') > Olor all k E Bgl.

(ii) d2(g) is convex on G.

Then, if

inf _ ((k, g - g'), (kA~' , g - g')) ~ 0
kEBg',KEBg'

g' is a best approximation.

VgEG,

Proof. Suppose g' is not a best approximation and A satisfies condition
(i). Then, by virtue of Theorem 2.1, there exists gl E G such that

inf ((k, gl - g'), (k, Agl - Ag')) > O.
kEBg',KEiJg,

For 0 < t < 1, we have

A(g' + t(gl - g')) - Ag' = tA~,(gl - g') + t oCt).

As A is Frechet-differentiable at g', 1imt_>0 II o(t)11 = O. Moreover, A has the
closed-sign property at g', therefore, there exists 1 > 00 > 0 such that, for
t E (0,00)

sgn(k, Agl - Ag') = sgn(k, Agt - Ag') for all k E Bg '

where gt = g' + t(gl - g').
Thus, (k, Agt - Ag') > 0 for all k E Bg ' t E (0,00], Therefore we may
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conclude that (kA;' ,gl - g') ;?; 0 for all k EBy' . If (kA;' ,gl - g') > 0 for
all k EBy' , then we have

inf ~ «k, gl - g'), (kA;' , gl - g'» > 0,
kEBg.'kEBg'

(3.9)

which proves the sufficiency. Otherwise, if (kA;, , gl - g') = O. for some
k EBy' , then, by the hypothesis, there is a g2 E G such that

Since By' is a(X*, X)-compact, there exists real number c > 0 such that

c = min (k, gl - g').
kEBg'

Therefore, for any 0 < A < 00 sufficiently small, we have

and

(kA;, , Ag2+ (1 - A) gl - g') = A(kA;' ,g2 - g') + (l - A)(kA;' ,gl - g')

> 0 for all k E By' .

As G is convex, /% + (1 - A) gl E G. Therefore, this again shows that, if g'
is not a best approximation, then there exists agE G satisfying inequality
(3.9).

On the other hand, suppose g' is not a best approximation and A satisfies
condition (n). Then there exists gl E G such that dP(&) < dF(g'). Therefore,
for each k EBy' , there existsh EF (which depends on k) such that

(k,h - g') = dF(g')

and

(k, gl - g') = (k,fl - g') - (k,h - gl)

;?; d1(g') - max (k,f - gl)
fEF

~ d1(g') - dF(gl)

> o.
Similarly, for each k E By' , there existsf2 E F (which depends on k) such that
(k, Ai; - Ag') = dF(g'). Then, if t > 0 and

gt = g' + t(gl - g'), oCt) = (ljt){Agt - Ag'} - A~'(gl - g'),
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(k, A;'(gl - g') + oCt»~ = (l/t)(k, Agt - Ag')

= (l/t){(k, Af2 - Ag') - (k, Ai; - Agt)}

?' (1/t){d2(g') - max (k, Af - Agt)}
rEF

?' (l/t){d2(g') - d2(gt)},

As d2(g) is convex on G, we have

(k, A;'(gl - g') + oCt»~ ?' (1/t){d2(g') - t d2(gl) - (1 - t) d2(g')}

= d2(g') - d2(gl)

>0.

As A.is Frechet-differentiable at g', we have limltl~o II o(t)11 = O. Consequently,

(kA~, ,gl - g') > O.

This again shows that if g' is not a best approximation and A satisfies condi­
tion (ii), there exists gl E G such that

which proves the theorem.
If G is a subspace, we have the following:

THEOREM 3.3. Let G be a subspace of X, A Frechet-differentiable at
g' E G. Then 0 belongs to the a(G*, G)-closure of the convex hull of

if and only if, for all g E G

inf _ ((k,g), (kA;, , g» ~ 0,
kEBg',kEBg'

where Dg' = {kA~' : k ERg'} and Bg, 1G, Dg, IG are the restrictions of the
functionals of B g , , Dg , to G, respectively.

Proof. Suppose 0 is not in the a(G*, G)-closure of the convex hull of
Bg , IG U D g , IG, then, by a known result in [4, Theorem 10, p.417] and a
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known result that the dual of G* under the a(G*, G)-topology is G, there
exists an element gl E G such that

This shows that infkEBg"kEBg ((k, gl), (kA;' ,gl)) ~ 0 is a sufficient condition
for 0 belongs to the a(G*, G)-closure of the convex hull of Bg , IG U D y ' IG .

Conversely, suppose that there exists go E G such that

As By' ,Bg , are a(X*, X)-compact, there is a real c > 0 such that

Since any rp E eo(By ' IG U Dy ' iG) can be written as

rp = li~ (L: A/'Yi)
•

for some real Ai'" > 0, Yi E Bg ' IG U Dy ' lG and Li Ai" = 1, we have

rp(go) = li~ (L: A/'Yi(go)) ?': c > o.
•

As rp is arbitrary, we may conclude that

Thus, 0 cannot belong to the a(G*, G)-closure of the convex hull of
By' IG U D g ' IG , which completes the proof.

THEOREM 3.4. Let G be a subspace of X, A Frechet-differentiable at
g' E G, and d1(g') = d2(g').

(i) If g' is a best approximation, then 0 belongs to the a{G*, G)-closure
of the convex hull of By' IG U D g ' IG .

(ii) Suppose that either A has the closed sign property at g' and there
exists g E G sueh that (kA~' ,g) > 0 V k E By' or d2(g) is convex on G. Then, if
obelongs to the u(G*, G)-closure of the convex hull ofBg , !G U fl g ' IG ,g' is a
best approximation.

In fact, the theorem follows immediately from Theorems 3.1-3.3.



348 KIM-PIN LIM

4. FINITE DIMENSIONAL SUBSPACE

We will now consider the case where G is an n-dimensional subspace. Let
us first define a mapping ¢ : X* -->- Rn as

where g1 ,... , gn is a basis for G. Obviously, ¢ is a continuous linear map. For
convenience, we write Bu', Du' to mean that Bu' IG , Du' IG throughout this
section. Obviously, Bu' and Du' are a(G*, G)-compact, ¢(Bu') and ¢(Du') are
compact. Moreover, since co(Bu' u Du') is a(G*, G)-compact, it is easy to
check that

where the closure is taken under a(G*, G)-topology.
This enables us to deduce the following results:

THEOREM 4.1. Let g' be an element of an n-dimensional subspace G of X
such that d1(g') = d2(g') andF a compact subset ofX. Assume that the operator
A is Frechet-differentiable. If g' is a best approximation, then there exist s
functionals k i E Bu' (i = 1,2,... , s), t functionals Iii E Bu' (i = 1,2,... , t) and
s + t positive real numbers a1 ,... , asH such that s + t ~ n + 1, L:~~ ai = 1
and

s t

L alki , g) + L as+lliiA;" g) = 0
i=1 i=1

for all g E G. (4.1)

Furthermore, suppose that either A has the closed-sign property at g' and there
exist g E G such that (IiA;" g) > Ofor all Ii EBu' or d2(g) is convex on G, then
the condition (4.1) implies that g' is a best approximation.

Proof. We define a continuous linear mapping ¢ : x* -->- Rn as above.
Moreover, we have pointed out that ¢(co(Bu' U Du')) = co(¢(Bu' U Du'))
where the closure is taken under a(G*, G)-topology. Since G is of finite
dimension, we have the following trivial equivalence:

oE co(Bu' U Du') = co(Bu' U Du')

if and only if (0,...,0) E co[¢(Bu' U Du')]' By virtue of Caratheodory's
representation theorem [2, p. 17], (0, ... ,0) E co[¢(Bu' U Du')] implies that
there exist k i E Bu' (i = 1,2,... , s), liiA;, E Du' (i = 1,2,... , t) and positive
numbers ai(i = 1,2,..., s + t) such that s + t ~ n + 1, L:~~ ai = 1 and

s t

L al(ki , g1)"'" (ki , gn)) + L as+l(liiA~' , gJ, ..., (liiA~' , gn)) = O.
i=1 i-1
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By scalar multiplication by any c = (cl , ... , cn), we get

that is

349

s t

L alki , g) + L as+i(kiA~' , g) = 0
i=l i=l

VgEG.

Thus, by virtue of Theorems 3.3 and 3.4, the theorem follows immediately,

COROLLARY 4.1. Let G be an n-dimensional subspace and A a linear
operator. Then, g' E G with d1(g') = d2(g') is a best approximation if and only
if there exist k i E Bg , (i = 1,2,... , s), k i E Bg ' , (i = 1,2,... , t) and s + t
positive numbers ai (i = 1,... , s + t) such that s + t ~ n + 1, L:~~ ai = 1 and

s t

L alki , g) + L as+i(kiA, g) = 0
i=l i=l

for all g E G.

We recall that a nonvoid subset Q of a compact set Z is said to be an
extremal subset of Z if a proper convex combination .\xl + (1 - .\) X2 ,

o< A. < 1, oftwo points Xl , X2 E Z is in Q only if both Xl and X 2 are in Q. An
extremal subset consisting of exactly one point is called an extreme point.

THEOREM 4.2. Let g' be an element of an n-dimensional subspace G of X
such that dl(g') = d2(g'). Assume that the operator A possesses a Frechet­
derivative on G. If g' is a best approximation, then there exist s extreme
functionals k i E K (i = 1,... , s), t extremefunctionals ki EK (i = 1,2,..., t), s + t
functions f1 ,· .. ,fsH E F (not necessarily distinct) and s + t positive numbers

s+i
al , .•. , as+t such that s + t ~ n + 1, Li=l ai = 1,

and

(ki ,Ii - g') = dF(g')

(ki , Afs+i - Ag') = dig')

i = 1,2,.." s;

i = 1,2,..., t;

S i

L alki , g) + L as+i(kiA~' , g) = 0
i=l i=l

forall gEG. (4.2)

Furthermore, suppose that either A has the closed-sign property at g' and there
exist g E G such that (kA;' , g) > Ofor all k E Bg ' or dlg) is convex on G. Then
the condition (4.2) implies that g' is a best approximation.
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Proof By virtue of Theorem 3.4 we know that ifg' is a best approximation
then 0 belongs to the a(G*, G)-closure of the convex hull of Bg ' U Dg ' •

Furthermore, by the assumption on A, 0 belongs to the a(G*, G)-closure of
the convex hull of B g ' U D g ,a1so implies g' is a best approximation. Hence, if
we define a continuous linear map ~ : x* --+ Rn as in the beginning of this
section, we know that ~(CO(Bg' U Dg,)) = co(~(Bg' U Dg,)), where the closure
is taken under a(G*, G)-topology. It follows at once that 0 is in

Since ~(Bg' U Dg') is a compact subset of Rn, by combining Caratheodory's
Theorem and Krein-Milman's Theorem [4, p. 440], we know that

if and only if there exist q extreme points WI, ... , Wq E ~(Bg' U Dg,) and
al , ... , aq > 0 such that L.~~l ai = 1, q ~ n + 1 and

q

L aiwi = O.
i~l

By a known result [1, p. 159], if T is a continuous linear map from X into Y
and Q is a compact subset of X, then, for every extreme point y in T(Q) there
exists at least one extreme point win Q such that T(w) = y, therefore, there
exist q extreme functionals Ii in B g' U D g' such that Yi = T(l;).

We denote by k i the functionals Ii which are extreme points in Bg ' and by
kiA~' the others. Hence, we get, L.:~l ai(ki ,g) + L.:~l as+i(hiA~' ,g) = 0 for
all g E G and s + t = q. Moreover, Bg ' is an extremal subset of K, so the
extreme points of Bg ' are the extreme points of K. On the other hand, it is
easy to check that hiA~' is an extreme point of D g ' only if hi is an extreme
point of13g , • In the same way, since Eg ' is an extremal subset ofK, the extreme
points of 13g , are again the extreme points of K. Consequently, ki are the
extreme functiona1s of K and hi are the extreme functionals of K. This con­
cludes the proof of the theorem.

Remark. We note that if the problem under consideration is to seek an
element in G which minimizes max(maXfEF PIC! - g), maxhEF P2(h - Ag)),

1 •

where F1 and F2 are given compact subsets of X and Y, respectively, then all
the preceding results which have been discussed follow at once without any
further assumption. Furthermore, we may generalise the previous theory to
the following general case: Let X, Y1 , Y2 ,"', Yn be n + 1 (n > 1) given
normed linear spaces, Ai (i = 1,... , n) continuous maps from X into Yi
(i = 1,2,..., n), and piC")(i = 0, 1'00" n) be given continuous seminorms on
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Yi(i = 0, 1,... , n) where Yo = X. The question is to determine an element
g' of G C X which minimizes

max(maxpoU - g), maxPl(Ad - A1g),··>, maxPn(Anf- Ang))·
fEF fEF fEF

All the previous results can be applied to this general case, the proofs are
similar, therefore, we do not go into details.
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