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1. INTRODUCTION

Starting from a problem concerning the uniform approximation of a
function and its derivatives, Moursund [10, 11] has recently considered the
problem of finding, for a real continuous function f (x) in C"[a, b], an algebraic
polynomial go(x) = Y7, a,%xi-1 of degree n — 1 which minimizes

max (max | D(f(x) — gG)D-

The nature and number of the extreme points of best approximation were
investigated. In the special case of approximation of a function and its first
derivative by algebraic polynomials a uniqueness theorem was obtained. More
recently, Dunham [5] studied the problem of simultaneously approximating
elements of a given set F by elements of a family of real-valued functions,
unisolvent of degree N, on a compact interval of the real line. He considered
the cases (i) F consists of one bounded real-valued function, (ii) F consists of
an upper semicontinuous real-valued function f+ and a lower semicontinuous
real-valued function f-, with f+ > f~ pointwise, and (iii) F consists of a
finite number of continuous real-valued functions. Later on, Diaz and
Mclaughlin [3] showed that analogous results hold for any nonempty
family F; in fact, they pointed out that the general problem of simultaneous
approximation of a family F by means of functions from a family G is
equivalent to the problem of the simultaneous approximation of certain
functions F~ and F+ with F~ <{ F*, where

Fr(x) = inf sup supf(y)
>0 0 |x—y|<8 feF
and
F~(x) =sup inf inff(y)
>0 0lx—y|<8 feF
fora << x <b.
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At this stage thete arose, in a natural way, the question: Could all these
results be particular cases of a more general theory ? The answer is affirmative.
Namely, the above sets G and F can be considered as subsets of a more
general “space”, and the derivatives of their elements can be considered as
continuous operators on general spaces. In fact, we shall deal with a still more
general problem: Let X, Y be two real normed linear spaces, # a compact
subset of X, G a convex subset of X and 4 : X - ¥ a continuous operator.
The question is to find a g’ € G which minimizes

max(max py(f — g), max p,(4f — Ag)),
feF feF

where p(*) and py(+) are given continuous seminorms on X and ¥, respectively.
The theory which we will develop for this problem is close to those in the
theory of uniform approximation of a function and its derivatives. The
sufficiency of a Kolmogorov-type condition for a best approximation for
operators A subject to no restrictions and the necessity of that condition for
A subject to “closed-sign” property are given. In case G is a finite-dimensional
subspace, we obtain a similar result to that in {12, p. 170]. The application to
various kind of spaces will be discussed elsewhere.

A summary of notation is given as follows: Let X*, ¥* be the dual spaces
of X and 7, respectively. The value of the continuous linear functional k in
X* (or Y*)at x in X (or ¥) will be denoted as (k, x). Let X(K) be a subset of
X* (Y, respectively) which is symmetrical, o(X*, X)-compact (s{(Y*, ¥)-
compact) and norm-bounded. We define continuous seminorms p, , p, on
X, Y, respectively as

p(f) = max(k,f) for finX,
kek
pay) = max (£,y) for yin Y.

Let F be a compact subset of X (in norm topology). We introduce, for
ge X,

d(g) = n}g}ﬁﬂf“ 2)

d(g) = max P Af — Ag),
and

di(g) = max(dy(g), d 8))-

Let G be a closed convex subset of X. We seek an element g’ in G such that

d(g) = ;gg dr(8)-



334 KIM~PIN LIM

Such an element will be called a simultaneous best approximation to F from
G, or more briefly, a ““best approximation.”

To answer the question of the existence of g’, we first note that the functions
di(g) and d,( g) are the suprema of families of continuous functions, therefore,
lower semicontinuous [7, p. 891. It follows that di(g) = max(d;(g), dx(g)) is
again lower semicontinuous. This ensures that d;(g) attains its infimum on a
compact set. Thus, we have the following:

LemMa 1.1. Let G be an n-dimensional subspace of X. Assume that the
restriction of py(*) to G is a norm. Then there exists g' € G such that

di(g’) = ;nt dp( ).

Proof. Let g; be a sequence in G such that lim dg(g,) = inf,.c dr(g).
Moreover,

P(g) < max py(f — g;) + max py(f) < M,
feF feF

for some real M. Since max;.y p;(f — g;) < de(g;) and max;.r p,( f) is fixed.
As the restriction of p,(+) is a norm, so {g;} is a bounded sequence in G.
Hence there exists g’ € G such that g, converges to g’. Furthermore for each i,

0 < de(g)— in(f; de(g) < de(g") — dr(g) + (dr(g) — ing di(g))
g€ ge
since the term in bracket tends to zero as i — oo and also, by semicontinuity
of de(*), dp(g") — dp(g;) — 0 as i — o0, this shows that
di(g") = inf d(g),
zeG

which proves the theorem.

Obviously, in the special case when g’ minimizes d;(g) or dy(g) and
de(g") = di(g") (or dy(g")), then the problem is solved, with g’ a best approxi-
mation, since in any case

max(inf di(g), inf dy(g)) < inf max(dy(g), do(g))-
geG@ geiG geG

Moreover, in this case equality holds here. In the more general case where
inequality holds, we have the following useful result.

LemMMA 1.2. Assume that

max(inf di(g), inf dy(g)) < inf max(dy(g), 4x(g))-
gEG geG geG
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If d(g) = maX;.p p(Af — Ag) is convex for all g in G and g’ is a best approxi-
mation, then dy(g') = dy(g").

Proof. Assume that dy(g) — di(g’) = € > 0 (for the case ¢ << 0, the
proof follows in the same way). Then g’ cannot minimize d, , for this would
lead to a contradiction of the hypothesis. Define a set

U={geG:p(g—g)<ie.
Then

di(g) < max{pl(f g)+p(g —8) <d(g)+3c Tfor gel.

Moreover, since dy(g) is convex and g’ does not minimize dy(g), by the
global minimum property of convex functions {2, p. 25], there exists g; € U
such that

dx(g1) < do(8).

This shows that g; is a better approximation than g’, which contradicts the
hypothesis. The proof is thus completed.

Since the convexity assumption on dy(g) holds, for example, when A4 is a
linear operator, it is clear that in a large class of problems having best
approximations we have d,(g’) = dy(g’). That this is not always the case
however is illustrated by the following example:

ExampLE 1. Let X = Y = C[—1, 1] with Chebyshev norm. Obviously
Chebyshev norm is generated by the set {J-(point evaluated functionals at

%) —1 < x < 1} of C*. Now, define an operator 4 as follows: for any 4(x)
in C[—1, 1],

1 h(x) = 1/2;
3/4 h(x) = 3/4;
3/4 h(x) = 1/4;
AR (x) = {(7/4) — 4h(x) Mx) < 1/4;
h(x) W(x) = 3/4;

(3/2) — h(x) 172 < B(x) < 3/4;
(1/2) + h(x) 1/4 < h(x) < 1/2.

1t is easy to check that A4 is a continuous mapping from C{—1, 1] into itself.
Suppose F={f(x) =1 — x%} is to be approximated by real constants.
Then,

di(a) = max(|| 1 — x* —al, | AQ — x*) — Aa.).
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As is evident from the following figure @ = 4 is a best approximation, and
de(}) = 2 = dy(}) 5 di(}) = 1. Moreover, we have

max(inf dy(a), inf dy(a)) < inf dx(a).
asR aeR asR

flx)
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FiGure 1

Finally, we consider a particular situation which leads trivially to a best
approximation as defined above, and which we wish to exclude. Suppose
that, for some g, € G and k € K (or % € K), there exists f; , f; , € F such that

(k. /s —g) = dr(g0)  and (K, /2 — &) = —dr(g0)

(or (R, Afy — Ago) = dp(go) and (k, Afy — Age) = —dr(gy)). Then g, is a
best approximation, as no approximation can make the error smaller at k
(or k). For example, suppose X = CW[0,7](y > 1) endowed with norm
max(|| flle, || Dfllo) and ¥ = C[0, 7], F = {¢*, sin x — 1} and A is the first
derivative operator. Let p;(f) = po(f) = max,epo..1 | F(x)| . We consider
that F is to be approximated by ax -+ b where a, b are real numbers. It is
obvious that when a = 0, b = 0, there exist x, = x; = 0 such that

dp(0) = max | f(0)| = max | Df(0)| = 1
feF feF

and
(e9GEin0 — 1) <0

(—e(cos 0) < 0.

FIGURE 2
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Thus, a = 0, b = 0 is a best approximation. As one can easily check from
the above figure, there is no other g, b that can make both errors smaller at
the point x, = x; = 0.

This situation has been discussed where a point such as g; is called a
“straddle phenomenon.” In this chapter, unless otherwise stated, the term
“best approximation” will exclude stranddie phenomena.

2. GENERAL CHARACTERIZATION THEOREM
Given g’ € G define the following subsets of K and K, respectively, as
By ={kin K:3finF, (k, f — g') = de(g)};
B, ={kinK :3finF, (k, Af — Ag") = dx(g)}.
Since

di(g) = max max (k, f — g) = max max (k, / — g),
feF keK keK  feF

so by compactness there exist ke K, fe F such that di(g) = (k,f— g).
Similarly, for dy(g).
Also, if di(g’) # dx(g"), one of B, , B, is empty.

Lemma 2.1. Let g’ in G and closed subsets M C K, ¥ C K be such that
n}g;( k,f—g) =0 forall kin M,
max (B, Af — 4g) =0  forall kin M,
and

inf ((k,g—g),(k Ag — Ag)) <0  forali ginG.
M

keM ke

Then

n =infdy(g) > inf (max (k,f— g'), max (& Af — Ag").
geG feF feF

keM kebl
Proof. In case max,.q(k,f— g') = 0 for some k in M or

max(k, Af — Ag’) = 0
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for some £ in M, the lemma is trivial. We assume that max,cp(k, f — g’) >0
for all k in M and max;., (k, Af — Ag’) > 0 for all k£ in M. Suppose that

inf  (max (k,f— g), max(k Af — Ag)) > 1.
keM,kef  feF

Then, there exists g in G such that
n <dlg) < inf (max(k,f—g), max (k, Af — Ag").
feFr

keM,FelM
This implies that

di(g) < max (k,f— g") forall kin M
feF

and

dy(g) < max (k, Af — Ag’)  forall kin J.
feF

Therefore, for k in M, there exists f; (depending on k) in F such that
(k’j?‘l - g) < (kafi - g’)’

(ksg '—g,) >09

ie.,

and, for each % in M, there exists £, (depending on %) in F such that
(Ea Afz - Ag) < (E, A.fZ - Ag’):

ie.,
(k, Ag — Ag") > 0.

Thus we have ‘
tk,g—g)>0 forall keM

and
(k, Ag — Ag) >0  forall kel

This contradicts the hypothesis, which proves the lemma.
THEOREM 2.1. If g’ € G is such that di(g') = dy(g') and

inf (k,g — g0, (k, Ag — 4g)) <O for geG, (1)
KkEB, ¢ keB,"

then g’ is a best approximation.

In fact, this is an immediate consequence of the Lemma 2.1.
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We know that if d,(g’) # du(g’), then one or other of the sets B, or B, is
empty, and in all of the following thecrems of this chapter we shall
accordingly, as in Theorem 2.1, explicitly assume d,{g") = dy(g").

ExampLE 2. Suppose X = Y = C[0, 1] and define 4 : X — ¥ by
Ah(x) = xh*(x). Furthermore, assume that K = K = {-- point evaluation
functionals at x : 0 <C x < 1}, then

i) = pf) = fllo = max L fl.
Suppose F consists only of the function f(x) = x and is to be approximated
by real constants. Hence

de(@) = max(|| x — alle, | ¥* — a® [|o).
It is easy to check that the best approximation for dy(a) is

—1+ V3

and

W FLE) - S (L) )

Moreover, the set B, of extremal functionals consists only of a negative
point evaluation functional at x = 0, i.e., B, = {& : (&, ) = —h(x), for all
he C[0, 1]1and x = 0}. Similarly, B, consists only of a positive point evalua-
tion functional at x = 1, i.e., B, = {& : (& &) = h(x) for all #& C[0, 1] and

x = 1}. However, for some ¢ € R such as ¢ = —2 we have
. _ —14+ 43 .
Eec—a)=—(-2- (~———2—»)) ~0 for £€B,,
and

—1+ V5

2
(a‘c,Ac—Aa):4ﬂ( 5 } >0 for 4£€B,.

Hence, the inequality (2.1) is not fulfilled.

In view of this negative result, it appears that the necessity of condition
(2.1) can be established only under further restrictive hypotheses. We now
define a property which, as we shall prove, implies that the condition (2.1} is
also necessary. This property is a generalization of the closed-sign property
introduced by Dunham [6] in 1969.

640/12/4~3
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DermNITION 2.1. Let G be a convex subset of X. The continuous map A4
from X into Y is said to have the closed-sign property at g € G, if, for any
h € G, and closed subset W C K such that (w, Ah — Ag) +# 0 for w e W, there
exists a 1 > 8 > 0 such that, for ¢ € (0, 3]

sgn(w, Ah — Ag) = sgn(w, Ag, — Ag) for all we W,

where g, = g + t(h — 2).
We shall say that 4 has the closed-sign property on Gif 4 hasitatall ge G.
To illustrate the definition, let X = ¥ = ([0, 1] and define 4 : X — Y by
Ah = h?, convex subset G = {ax : for real ¢ > 0} and

R ={+%:xel0,1],

where % is a point evaluation functional at x. Then, for any a;x, a,x in G and
closed subset W of K, such that

(%, Aayx — Aayx) = - (a; — a)(a, + a,) x* £ 0 for e W.
‘We have
(&, Aayx — Aax) = + Hay — a5)(2a, + Hay — ay)) X2,

where a; = ds + t(a; — a).

For the case a, = 0, itis clear sgn(&, da,x — Aa,x) = sgn(&, Aa,x — Aa,x)
for ¢ > 0. Otherwise, there exists a 1 > & > 0 such that 2a, + #{(a; — a,) >0
for all t e (0, 8]. Hence, for such 3, we have sgn(%, Aa;x — Aa,x) =
sgn(%, Aa,x — Aayx) for all £e W, te(0,8]. This shows that 4 has the
closed-sign property on G.

Let us return to the Example 2. It is easy to check that A fails to have the
closed-sign property at a = (—1 + v/3)/2. Further, we have already shown
that the condition (2.1) in Theorem 2.1 is not a necessary condition for g’ to
be a best approximation. In fact these two statements are related, as is shown
by the following theorem:

THEOREM 2.2. Suppose that A has the closed-sign property at g’ € G and
di(g") = dxg"). Then if g’ is a best approximation,

inf  ((k,g—g)(kAg— Ag) <0 for geG.

keBys ey
Proof. Suppose there exists g; € G such that
inf  ((k, g1 — &), (k, 4g, — 4g")) > 0. 2.2

keB,+ keBy
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Then we will show that g’ is not a best approximation. Since B, , B, is
a(X*, X)-compact (a(Y*, ¥)-compact, respectively), from inequality (2.2), we
may conclude that there are relatively open subsets U, U of K, K containing
B,, B, such that

inf ((k,g, —g), (R, Ag, — Ag")) > a  for some a > 0.

keU, kel

Since U, U are relatively open in K, K and B, C U, B, C U, there exists a
real ¢ > 0 such that

di(g) — max max (k,f — g') = ¢, (2.3
keK\U feF
dy{ g') — max max (k, Af — Ag") > c. (2.4)
keR\T feF

Hence, for ke U, 0 <t < 1, we have
max (k, f — g) = max (k,f — g} — 1k, g: — &)
feF feF
<max (k,f— g < di(g), (2.5)
feF

where g, = g’ + t(gs — &)
For ke K\U,

max k,f—g) < max k,f—g) + tpg — &)

<L d(g) —c+ tplg— g) < dlg) (2.6)

for 0 < 7 sufficiently small.
Let U be the closure of U. Since 4 is a continuous map, we have

(F, Ag, — Ag") > aVEe U,

Furthermore A4 has the closed-sign property at g’, so for 0 < r sufficiently
small, we have (, Ag, — Ag") > 0Vke U. Hence, for ke U,

max (k, Af — Ag) = max (k, Af — Ag') — (k, Ag, — Ag)
< max (k, Af — Ag"y < dy(g). (2.7
For ke R\U,
max (k, Af — Agy) < max (k, Af — Ag') + p(Ag’ — Ag)

< dy(g) — ¢+ poldg’ — Ag) < dl(g) (2.8
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for 0 < ¢ sufficiently small and continuity of 4 and p,. Combining (2.5),
(2.6), (2.7) and (2.10), we have di{(g;) << dx(g"). This shows that g’ is not a
best approximation. The theorem is thus proved.

Note that in case 4 is a linear operator, then, obviously, 4 has the closed-
sign property on G.

3. FRECHET—DIFFERENTIABLE OPERATOR

In this section, we will consider the operator A possessing a Fréchet
derivative. This derivative, in fact, is a linear operator from X into Y, for
each fixed g € X, denoted by A4,’. That is, for each € > 0, there exists 5 > 0
such that

| A(g +h) — Ag — A/h|| < el h|l
for all ke X with || £|| < 8. Therefore, for fixed 2(s~ 0) € X, setting
8(t) = (A(g + thy — Ag)/t — A,/ h for real ¢,

we have 8(¢) € Y satisfying lim);,, 1| 8()]| = 0. Thus, we have the following
theorem:

THEOREM 3.1. Suppose A has a Fréchet derivative at g’ in convex set G and
di(g") = dy(g"). If g’ is a best approximation, then for all g e G

inf  ((k, g — &) (kdy g —g)) <0. (3.1)

keB,.keB,
Proof. Suppose there exists a g; € G such that

inf  ((k, g, — ), (kA , g1 — &) > 0. (3.2)

keB, . feB,

As B, and B, are o(X*, X)-compact and o(¥*, ¥)- compact respectively,
there exist relatwely open sets U, U of K, K, containing B,, B,, respectively,
such that,

Vke U, k,g1—g)=a
VEeU, (Fdy.g—g) > a, (33

for some a > 0.
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Since K, K are o(X*, X)-compact and o(Y*, ¥}-compact, respectively, there

exist real numbers ¢, , ¢, > 0 such that

max max (k, f— g') = d(g) — ¢,
keK\U feF

max max (&, Af — Ag") = dy(g) — 5.
keR\U reF
Write g, = g" 4+ #(gy — g), 0 <f <1 and
max (k, f — g) = max (k, / — g') — ¢k, g1 — &),
feF feF
soforkelU,0<r<1
max (k, /' — g;) < max (k, f— g} < di(g")
feF feF
for ke K/U,

n;}if( (b, f—g) <d(g) —a+ iplg —g) <dlg)

for 0 < ¢ sufficiently small.
As A is Fréchet-differentiable at g’, we have

Agi — Ag' = (3(0) + A (g — )l Tim |3} = 0.
£

From inequality (3.3), for £e U,

(k, A;(gy — &)+ 8(1)) = (R4, , g — &) + (&, 8(2)
>a—| Kl 8 >0,

(3.4)

(3.5)

for 0 < ¢ sufficiently small, because K is norm bounded and || §(?)|| — 0, as

¢ > 0. So for small ¢ > 0, we have

(E, Ag, — Ag)) > 0vEke U.
Write

max (Ea Af‘ Agt) = max (};’ Af— Ag,) - (E) Agt - Ag,)
feF feF

Hence, for small r > 0,Vke U,

max (k, Af — Ag;) < max (k, Af — Ag") < dy(g")
feF feF

(3.6

G
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VEeK/U,
max (B, Af — Agy) < dy(g) — ¢y + pldg, — Ag") < dy(g'), (3.8)

for small ¢ > 0 and continuity of A and p, .
Combining (3.4), (3.5), (3.7), and (3.8), we have dp(g;) < dr(g’). Thus, g’
is not a best approximation, which proves the theorem.

THEOREM 3.2. Suppose A has a Fréchet derivative at g' in convex set G and
di(g)) = dy(g"). Suppose further that A satisfies either of the following condi-
tions:

(1) A has the closed-sign property at g' and there exists g € G such that
(k4. ,g —g) >O0forallkeB,.

(ii) dyg) is convex on G.
Then, if

inf o ((k: g gl)’ (EA;' » & — g')) <0 Vg €@,

keB,+. keB,
g’ is a best approximation.

Proof. Suppose g’ is not a best approximation and A satisfies condition
(i). Then, by virtue of Theorem 2.1, there exists g; € G such that

inf ((ka 81— gl): (Ea Agl - Ag,)) > 0.
keB,r kel

For 0 <<t < 1, we have
A(g + 1(gy— &) — Ag’ = 14;(g — &) + 1 3(0).
As A is Fréchet-differentiable at g’, lim,,, || 8(¢)|| = 0. Moreover, 4 has the
closed-sign property at g’, therefore, there exists 1 > §, > 0 such that, for
re (0: 80)
sgn(k, Ag, — Ag") = sgn(k, Ag, — Ag’) for all ke B,

where g, = g’ + #(g, — g'). N
Thus, (&, Ag, — Ag’) >0 for all ke B, te (0, §,]. Therefore we may
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conclude that (&4, , g, — g’) >0 forall ke B, . If (R4} , g, — g') > 0 for
all e B, , then we have

inf ((k: 81— g’)’ (EA;' » 81 g’)) = 03 (3'9)

keB,, keB,

which proves the sufficiency. Otherwise, if (k4. , g, — g’) = 0. for some
Ee B, , then, by the hypothesis, there is a g, € G such that

(kA ,g,—g) >0 forall kchB,.
Since B, is o{X*, X)-compact, there exists real number ¢ > 0 such that

¢ = min (k, g, — g)-
keB,.

Therefore, for any 0 << A << §, sufficiently small, we have
k. Age+ (1 —Ng—g)=(k, g1 —g) + Mk, g2 —g) >0 forall keB,,
and

(Rdy  Agy + (1L — N gy — &) = Mkdy g5 — &) + (1 — N4y, g: — &)
>0 forall keB,.

As G is convex, Ag, + (1 — M) g; € G. Therefore, this again shows that, if g’

is not a best approximation, then there exists a g € G satisfying inequality

3.9).

On the other hand, suppose g’ is not a best approximation and 4 satisfies
condition (ii). Then there exists g, € G such that dx{g,) << dx(g’). Therefore,
for each k € B, , there exists f; € F (which depends on k) such that

k. fr — &) = di(g)
and
k.g.—8)=®kri—8)— /i —g)
= di(g) — max k. f— g0
= di(g") — d(g)
> 0.

Similarly, for each & e B, , there exists f, € F (which depends on &) such that
(k, Af, — Ag") = dp(g"). Then, if t > 0 and

g=g +He—g) &)= (/){Ag; — Ag} — Ay(g1 — &)
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we have
(k, Ay(gy — &) + 8(1) = (11)(k, Ag, — Ag)
= (I/D{(k, Af, — Ag") — (k, Afy — Ag)}
> (U)id(g) — max (h, 47 — A}
= (1/t){dLg") — d g}

As dy(g) is convex on G, we have

(k, Ay(gy — &) + 8(t) = (1/1){dy(g") — tdy(gy) — (1 — 1) dy(g)}
= dy(g") — dxgD
> 0.
As A is Fréchet-differentiable at g’, we have limy, ., || 8(%)]| = 0. Consequently,
(R4} , g, —g) > 0.

This again shows that if g’ is not a best approximation and A4 satisfies condi-
tion (ii), there exists g; € G such that

inf ((ka & — g’)a (EA;' 81— g,)) > 09

keB, kB,

which proves the theorem.
If G is a subspace, we have the following:

THEOREM 3.3. Let G be a subspace of X, A Fréchet—differentiable at
g' € G. Then 0 belongs to the o(G*, G)-closure of the convex hull of

By |6V Dy g
if and only if, for all g€ G

inf _ ((k, ), (k4y , g) <0,

keB,s,keBye

where D, ={kA) : keB,} and B, |c. D, | are the restrictions of the
Junctionals of B, , D, to G, respectively.

Proof. Suppose 0 is not in the o(G*, G)-closure of the convex hull of
B, s U Dy g, then, by a known result in {4, Theorem 10, p.417] and a
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known result that the dual of G* under the o(G*, G)-topology is G, there
exists an element g, € G such that

Iflf: ~ ((ka gl):v (];A;' 5 gl)) > 0‘

keB,-, kB

This shows that inf, 5 , zc 1, (%, &0, (R4, , g1)) < 0is a sufficient condition
for 0 belongs to the o(G*, G)-closure of the convex hull of B, |¢ W D, |6 .
Conversely, suppose that there exists g, € G such that

(7.80) >0VyeB,|cUDyls.
As B, , B, are o(X*, X)-compact, there is a real ¢ > 0 such that
(v, 8) = cVyeBy UD,.

Since any ¢ € co(B, |¢ U D, |¢) can be written as
¢ = lim (Z M%}
for some real A* > 0, y,€ By |c U D, lg and 3; A = 1, we have
#go) = lim (£ Arygn) = ¢ > 0.

As ¢ is arbitrary, we may conclude that
P(go) = ¢ >0 Vo EE(BQI l¢ U Dy [6).

Thus, 0 cannot belong to the o(G*, G)-closure of the convex hull of
By ¢ Y Dy |¢ , which completes the proof.

THEOREM 3.4. Let G be a subspace of X, A Fréchet-differentiable ai
g' € G, and di(g) = dy(g).
(1) If g is a best approximation, then O belongs to the o(G*, G)-closure
of the convex hull of By | I Dy | .

(i1}  Suppose that either A has the closed sign property at g' and there
exists g € G such that (kA}, , g) > OV ke B, or dy(g) is convex on G. Then, if
0 belongs to the o(G*, G)-closure of the convex hull of By ¢\ W Dy g, g isa
best approximation.

In fact, the theorem follows immediately from Theorems 3.1-3.3.
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4, FINITE DIMENSIONAL SUBSPACE

We will now consider the case where G is an #n-dimensional subspace. Let
us first define a mapping ¢ : X* — R” as

¢'(k) = ((k, gl)""? (k> gn))a

where g, ,..., g 18 a basis for G. Obviously, ¢ is a continuous linear map. For
convenience, we write B, , D,s to mean that By |¢, Dy |¢ throughout this
section. Obviously, B,- and D, are o{(G*, G)-compact, ¢(B,) and ¢(D,) are
compact. Moreover, since co(B,s U D) is ¢(G*, G)-compact, it is easy to
check that

$(co(By U D)) = co($(By U Dy?)),

where the closure is taken under o(G*, G)-topology.
This enables us to deduce the following results:

THEOREM 4.1. Let g’ be an element of an n-dimensional subspace G of X
such that d\(g") = dy)(g") and F a compact subset of X. Assume that the operator
A is Fréchet-differentiable. If g’ is a best approximation, then there exist s
functionals k;€ By (i = 1,2,...,5), t functionals kE;eB, (i=1,2,..,t) and
§ -+ t positive real numbers a ..., d,,.; Such that s +t <n -+ 1, 2::: a; =1
and

s €
Y adks,g) + Y audkAy,8) =0  forall geG. “4.1)
=1 i=1
Furthermore, suppose that either A has the closed-sign property at g’ and there
exist g € G such that (EA), , g) > 0 for all ke B, or dy(g) is convex on G, then
the condition (4.1) implies that g’ is a best approximation.

Proof. We define a continuous linear mapping ¢ : X* — R" as above.
Moreover, we have pointed out that ¢(co(B,” U D,?)) = co(d(B,s U D))
where the closure is taken under o(G*, G)-topology. Since G is of finite
dimension, we have the following trivial equivalence:

0 € co(By U Dy) = co(By U Dy)

if and only if (0,...,0) € co[¢(B,r U D,)]. By virtue of Caratheodory’s
representation theorem [2, p. 17], (O,..., 0) € co[¢(B,” U D,)] implies that
there exist k;€ By (i=1,2,..,5), kA, €Dy (i=1,2,.,1) and positive
numbers a;(i = 1, 2,...,s + ) such that s -+ ¢t <<n + 1, Zf:: a; =1 and

8

2 ai((ki > gl)’---’ (kz s gn)) + Z as+i((i€iA;' s g]_),---, (EzA;' ] gn)) = O

=1 i=1
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By scalar multiplication by any ¢ = (¢ ,..., ¢,,), We get

j=1 i=1

that is

Z z(kz » g) =+ Z as+z(k A g) =0 VgE G.

i=1

Thus, by virtue of Theorems 3.3 and 3.4, the theorem follows immediately.

COROLLARY 4.1. Let G be an n-dimensional subspace and A a linear
operator. Then, g' € G with di(g") = dy(g') is a best approximation if and only
if there exist k;c B, (1—12 LS, BseBy ,(i=1,2,..,t) and s+t

positive numbers a; (i = 1,..., s + t)such that s + t <n -+ 1, Zsf{ a;, = 1 and

8

t
Yoadki, 8+ Y aulbkid, ) =0  forall geG.
i=1

4=1

We recall that a nonvoid subset Q of a compact set Z is said to be an
extremal subset of Z if a proper convex combination Ax; + (1 — A) X,
0 << A < 1, of two points x; , x, € Zisin Q only if both x, and x, are in . An
extremal subset consisting of exactly one point is called an extreme point.

TueoreM 4.2. Let g’ be an element of an n-dimensional subspace G of X
such that d(g") = d)(g'). Assume that the operator A possesses a Fréchet-
derivative on G. If g’ is a best approximation, then there exist s extreme
Sfunctionalsk; € K (i = 1,..., 5), t extreme functionals B;e K (i =1,2,..., ), 5 + ¢
SJunctions fi ,..., for: € F (not necessarily distinct) and s - ¢ positive numbers
@y yeeey Aoy SUCh that s + ¢ <n + 1, Zf: a;, =1,

ke fi —g)=4dg) i=12..,5;

(’Ez 5 Af:?*H' - Ag/) - dF(gl) i == ]., 2,.,.., f,
and

s i
Z aflk;,g) + z as—H‘(];iA;' ,8) =0 SJorall gedG. 4.2)

=1 i=1

Furthermore, suppose that either A has the closed-sign property at g’ and there
exist g &€ G such that (RA: , g) > O for all k € B, or dy(g) is convex on G. Then
the condition (4.2) implies that g’ is a best approximation.
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Proof. By virtue of Theorem 3.4 we know that if g’ is a best approximation
then O belongs to the o(G*, G)-closure of the convex hull of B, U D, .
Furthermore, by the assumption on 4, 0 belongs to the o(G*, G)-closure of
the convex hull of B, U D, also implies g- is a best approximation. Hence, if
we define a continuous linear map ¢ : X* — R" as in the beginning of this
section, we know that ¢(co(B,s U D)) = co(¢(B,s U D)), where the closure
is taken under o(G*, G)-topology. It follows at once that 0 is in

co($(B, U D).

Since ¢(B, U D) is a compact subset of R, by combining Caratheodory’s
Theorem and Krein—-Milman’s Theorem [4, p. 440], we know that

0 co($(B, U D)

if and only if there exist g extreme points W ,..., w, € $(B,» U D,) and
a ,..., a; > 0 such that Y, a;=1,qg<n-+land

q
Y aw; = 0.
=1

By a known result {1, p. 159], if T is a continuous linear map from X into ¥
and Q is a compact subset of X, then, for every extreme point y in T(Q) there
exists at least one extreme point w in Q such that T(w) = y, therefore, there
exist g extreme functionals /; in B, U D, such that y, = T(/).

We denote by k; the functionals /; which are extreme points in B, and by
E;A! the others. Hence, we get, 3;_ aik , 8) + Yiq dori(Fid)r , g) = 0 for
all ge G and s + t = g. Moreover, B, is an extremal subset of K, so the
extreme points of B, are the extreme points of K. On the other hand, it is
easy to check that %,4; is an extreme point of D, only if £; is an extreme
point of B, . In the same way, since B, is an extremal subset of K, the extreme
points of B, are again the extreme points of K. Consequently, k; are the
extreme functionals of K and &, are the extreme functionals of K. This con-
cludes the proof of the theorem.

Remark. We note that if the problem under consideration is to seek an
element in G which minimizes max(maxyer, pi(f — g), max, r, Po(h — Ag)),
where Fy and F, are given compact subsets of X and Y, respectively, then all
the preceding results which have been discussed follow at once without any
further assumption. Furthermore, we may generalise the previous theory to
the following general case: Let X, Y, ¥5,...., Y, be n+ 1 (n > 1) given
normed linear spaces, A; (i = 1,...,n) continuous maps from X into Y;
(G=1,2,.,n), and p,(-)(i =0, 1,..., n) be given continuous seminorms on
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Y(i=0,1,.., n) where Y, = X. The question is to determine an eclement

gl

of G C X which minimizes

max(maxp()(f_ g)a max pl(Alf_" Alg)ﬂ"wa max pn(Anf— Ang))
feF feF feF

All the previous results can be applied to this general case, the proofs are
similar, therefore, we do not go into details.

10.

11.

12.
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